

Topic Biochemical test of Protein and

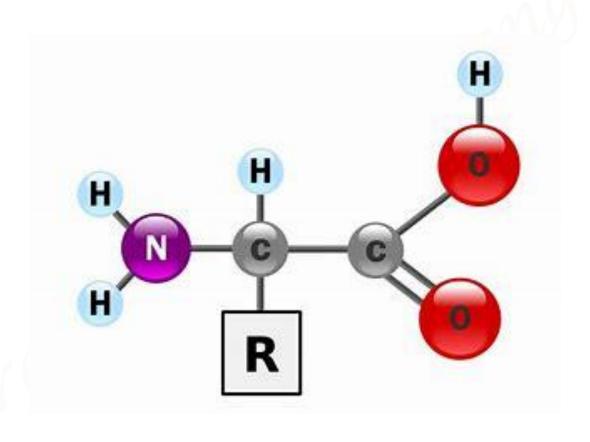
Carbohydrates

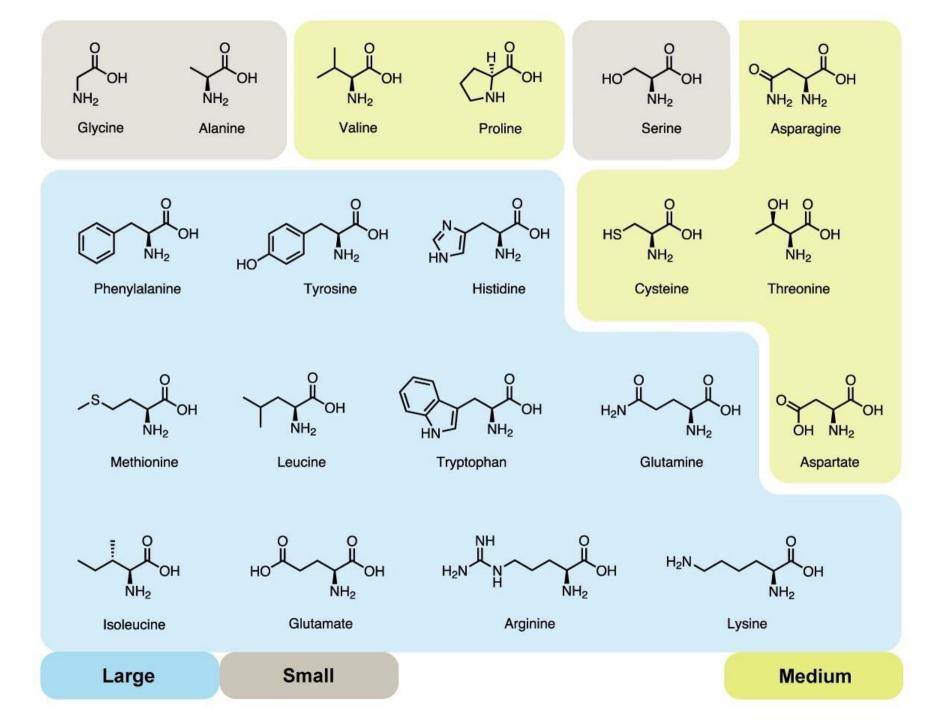
B.Sc. 3rd
Practical of Zoology

DEPARTMENT

OF

ZOOLOGY


By
Pradeep Kumar Jangir
Department of Goology


University College of Science Mohanlal Sukhadia University, Udaipur (Raj.)

What is Protein >

- →Proteins are large molecules consisting of amino acids which our bodies and the cells in our bodies need to function properly.
- →Our body structures, functions, the regulation of the body's cells, tissues and organs cannot exist without proteins.
- →Our muscles, skin, bones and many other parts of the body contain significant amounts of protein. Protein accounts for 20% of total body Weight.

Amino Acids:

S. No.	Test Name	Procedure	Observation	Result
1	Biuret Test	 Take 2 ml. of the solution to be tested in a test tube Add 2 ml. of 5% sodium hydroxide solution Mix the solutions Add two drops of 1% copper sulfate solution 	The solution will turn violet or purple	Violet –purple color indicate presence of peptide linkage means Protein is present.
2.	Ninhydrin test	 Take 1 ml. of test solution in a test tube Add 10 drops of Ninhydrin solution in the above test tube Hold the test tube on flame Boil the solution 	Bluish- purple color formed in the solution.	bluish-purple color indicates the presence of free alpha amino acids

S. No.	Test Name	Procedure	Observation	Result
3.	Solubility test	 Take 10 ml. distilled water in a test tube. Add the given powder into the water Shake the test tube 	The given powder is insoluble in water.	The insoluble protein is keratin.
4.	Isoelectric pH test	 Take 3 ml. test solution in a test tube Add 3 drops of indicator (bromocresol green) Add 1% acetic acid solution to the above test tube drop by drop Keep adding acetic acid until a light green color appears indicating isoelectric pH Allow it to stand 	A curdy green precipitate is formed at the top of the test tube.	The protein present in the solution is Casein

Carbohydrates:

- A carbohydrates are a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen—oxygen atom ratio of 1:2:1
- Thus with the empirical formula $C_n(H_2O)_n$
- not all carbohydrates conform to this precise stoichiometric definition (e.g. deoxy-sugars such as fucose), nor are all chemicals that do conform to this definition automatically classified as carbohydrates (e.g. formaldehyde)

C₆H₁₂O₅ - Fucose

HCHO - formaldehyde

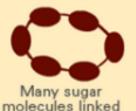
Carbohydrates Classification

Monosaccharide

Glucose Fructose Galactose

Single sugar molecule

Oligosaccharide


Maltose Sucrose Lactose

2-10 sugar molecule

Polysaccharide

Starch Glycogen Cellulose

www.BiochemDen.com

Classification and Nomenclature

Carbohydrates

Monosaccharide

Oligosaccharide

Polysaccharide

Functional group

Number of carbon atoms

Disaccharide

Maltose

Lactose

Trisaccharide

Raffinose

Tetrasaccharide Homopolysaccharide

Hetropolysaccharide

Aldoses

e.g Glucose

Tetroses

Trioses

Pentoses

Sucrose

Stachyose

Dextrin

Starch

Heparin

Hyaluronic

acid

Glycogen

Cellulose

Inulin

Chondroitin sulfate

Dermatan Sulfate

Keratan Sulfate

Ketoses e.g Fructose

Hexoses

Heptoses

S. No.	Test Name	Procedure	Observation	Result
1.	Molisch test	 Take 2 ml. of the solution to be tested in a test tube Add 2 drop of Ethanolic alpha Naphthol in solution Mix the solutions and Add 2 ml of Conc. H₂SO₄ along the side of the test tube 	Reddish violet or purple colored ring form at junction of 2 liquid	Carbohydrate in present
2.	Benedict's test	 Take 5 ml. of of Benedict's reagent (copper sulfate, sodium citrate, and sodium carbonate) in a test tube Add 10 drops of sugar solution in the above test tube Hold the test tube on flame to boil the solution for 2 minute and let the solution cool down 	Different color appear Green color Green Precipitate Yellow pre. Orange pre. Brick red Pre.	

S. No.	Test Name	Procedure	Observati on	Result
3.	Iodine test	 Take 2 ml of the given solution in a test tube Add 2-3 drops of iodine reagent in the above test tube Wait for some time 	Blue Reddish- purple Reddish- brown colored appear	If blue color appears, amylase or starch is present in the solution If reddish-purple color appears, dextrin is present If reddish-brown color appears, glycogen is present

